如果你读过Anaconda + VScode | Python环境安装与管理, 相信你已经配置好了python环境,本文介绍利用Python读写segy数据。

segyio是一个可以读写segy文件的python库。其详细说明可以参考官方文档Github主页

这里仅介绍一个segyio使用示例。

1. 准备数据

本文以Marmousi模型为例,读取segy文件。

首先,下载marmousi模型示例数据

2. 安装segyio

首先, 打开Anaconda Prompt, 创建一个环境seismic (也可以在之前创建好的环境/base环境中直接安装) :

1
conda create -n seismic python=3.11

激活该环境:

1
conda activate seismic 

安装segyio:

1
pip install segyio

安装画图用的matplotlib库:

1
pip install matplotlib #或conda install matplotlib

3. 读取segy文件

打开vscode,创建.ipynb文件,选择已安装好segyio的环境seismic。

1
2
3
import segyio
import matplotlib.pyplot as plt
import numpy as np
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
def read_segy(data_dir,shotnum=0):
with segyio.open(data_dir,'r',ignore_geometry=True) as f:
sourceX = f.attributes(segyio.TraceField.SourceX)[:]
trace_num = len(sourceX) #number of all trace
if shotnum:
shot_num = shotnum
else:
shot_num = len(set(sourceX)) #shot number
len_shot = trace_num//shot_num #The length of the data in each shot data
time = f.trace[0].shape[0]
print('start read segy data')
data = np.zeros((shot_num,time,len_shot))
for j in range(0,shot_num):
data[j,:,:] = np.asarray([np.copy(x) for x in f.trace[j*len_shot:(j+1)*len_shot]]).T
return data

读入segy文件(前面下载好的marmousi模型)

1
2
3
segyfile = '../elastic-marmousi-model/model/MODEL_P-WAVE_VELOCITY_1.25m.segy'
marmousi = read_segy(segyfile,shotnum=1)
print(marmousi.shape)

画图:

1
2
3
plt.figure(figsize=(15,3))
plt.imshow(marmousi[0])
plt.colorbar()

Marmousi model

试一下另一个文件:

1
2
3
4
5
segyfile1 = '../elastic-marmousi-model/processed_data/SEGY-Depth/SYNTHETIC.segy'
marmousi_depth = read_segy(segyfile1,shotnum=1)
print(marmousi_depth.shape)
plt.figure(figsize=(10,5))
plt.imshow(marmousi_depth[0],vmin=-0.01,vmax=0.01,aspect=1)

Marmousi data

4. 写入segy文件

创建一个简单的一维数组(可以当成速度),并扩展到二维,画图:

1
2
3
4
5
6
7
8
9
velo = np.arange(1000,5000,100)

def one_to_2d(v_1d, nx =1000):
return np.ones((v_1d.shape[0],nx))*v_1d.reshape(v_1d.shape[0],1)

velo2d = one_to_2d(velo)
plt.figure(figsize=(8,3))
plt.imshow(velo2d,aspect=10)
plt.colorbar()

定义写入segy的函数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def creat_velocity_segy(vel, dir, dx = 10, dt = 10):
seis = vel
spec = segyio.spec()
spec.samples = list(np.int32(np.arange(vel.shape[0])* dt))
spec.format = 5
spec.tracecount =vel.shape[1]
with segyio.create(dir, spec) as f:
## fill the file with data
for i in range(vel.shape[1]):
t = i
f.trace[t] = seis[:,i]
f.header[t][segyio.TraceField.FieldRecord] = 0
f.header[t][segyio.TraceField.ShotPoint] = 0
f.header[t][segyio.TraceField.TraceNumber] = i+1
f.header[t][segyio.TraceField.ReceiverGroupElevation] = 10
f.header[t][segyio.TraceField.GroupX] = i*dx
f.header[t][segyio.TraceField.SourceX] = i*dx
f.header[t][segyio.TraceField.TRACE_SAMPLE_INTERVAL] = 10

写入segy文件:

1
2
savepath = './savepath/velomodel.segy'
creat_velocity_segy(velo2d,dir=savepath,dx=10,dt=10)

读取刚刚写的segy文件,画图检查是否正确:

1
2
3
4
modelcheck = read_segy(savepath,shotnum=1)
plt.figure(figsize=(8,3))
plt.imshow(modelcheck[0],aspect=10)
plt.colorbar()

model check

Tips 将炮集数据抽成共检波点道集

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
paths= 'common_source.segy'
with segyio.open(paths,'r',ignore_geometry=True) as f:
sourceX = f.attributes(segyio.TraceField.SourceX)[:]
trace_num = len(sourceX) #number of trace, The sourceX under the same shot is the same character.
print('trace_num = ',trace_num)

shot_num = len(set(sourceX)) #shot number
print('source_num = ',shot_num)

len_shot = trace_num//shot_num #The length of the data in each shot data
print('len_shot(trace num of per source) = ',len_shot)

time = f.trace[0].shape[0]
print('sampling time = ', time)

print('start read segy data')
data = np.zeros((shot_num,time,len_shot))
for j in range(0,shot_num):
data[j,:,:] = np.asarray([np.copy(x) for x in f.trace[j*len_shot:(j+1)*len_shot]]).T
print(data.shape)

crp_data = np.zeros((len_shot,time,shot_num))
for i in range(len_shot):
for t in range(time):
crp_data[i, t, :] = data[:, t, i]
print(crp_data.shape)